线性代数|机器学习-P24加速梯度下降(动量法)

news/2024/8/31 14:50:44 标签: 算法, 机器学习, 矩阵, 人工智能, 线性代数

文章目录

  • 1. 概述
  • 2. 引入
  • 3. 动量法梯度下降

1. 概述

我们之前学的最速梯度下降[线搜索方法] 公式如下:
x k + 1 = x k − s k ∇ f ( x k ) \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k) \end{equation} xk+1=xkskf(xk)
但对于这种方法来说,步长 s k s_k sk 的选择是固定的,因为模型的参数太大,其损失函数具有不确定性,这样我们很难选择合适的步长 s k s_k sk

  • 当我们的步长 s k s_k sk太小,会导致需要很长的时间才能够找到极小值点或者最小值点
  • 当我们的步长 s k s_k sk太大,会导致我们迭代的点 P k + 1 P_{k+1} Pk+1在目标点 P ∗ P^* P附件来回跳动。无法收敛。

根据上面的问题,我们今天研究下加速梯度下降的两种方法:

  • Momentum 动量梯度下降法[这节主要内容]
  • Nesterov 法[Momentum的变种]
  • SGD[Stochastic gradient descent]随机梯度下降法
  • mini-batch SGD [小批量随机梯度下降]

2. 引入

假设我们有如下函数 f ( x ) f(x) f(x)
f ( x ) = 1 2 X T S X = 1 2 ( x 2 + b y 2 ) , X = [ x y ] S = [ 1 0 0 b ] \begin{equation} f(x)=\frac{1}{2}X^TSX=\frac{1}{2}(x^2+by^2),X=\begin{bmatrix}x\\\\y\end{bmatrix}S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix} \end{equation} f(x)=21XTSX=21(x2+by2),X= xy S= 100b

  • 一次导数和二次导数如下:
    ∇ f ( x ) = ∂ 1 2 X T S X ∂ X = S X = [ x b y ] ; ∇ 2 f ( x ) = S = [ 1 0 0 b ] \begin{equation} \nabla f(x)=\frac{\partial \frac{1}{2}X^TSX}{\partial X}=SX=\begin{bmatrix}x\\\\by\end{bmatrix};\nabla^2 f(x)=S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix} \end{equation} f(x)=X21XTSX=SX= xby 2f(x)=S= 100b
  • 通过上面的函数可以看出,我们每次求的值可以表示如下:
    f ( x ) = 1 2 ( x 2 + b y 2 ) = c \begin{equation} f(x)= \frac{1}{2}(x^2+by^2)=c \end{equation} f(x)=21(x2+by2)=c
  • 此函数为一个椭圆,也就是说,我们是在不断地寻找最小的椭圆,如图所述:

在这里插入图片描述

  • 假设我们定义初始点 p 0 = ( x 0 , y 0 ) = ( b , 1 ) p_0=(x_0,y_0)=(b,1) p0=(x0,y0)=(b,1)
  • 步长 s k = 1 x 0 + y 0 = 1 b + 1 s_k=\frac{1}{x_0+y_0}=\frac{1}{b+1} sk=x0+y01=b+11最后给出原因
    x k = b ( b − 1 b + 1 ) k , y k = ( 1 − b 1 + b ) k , f k = ( 1 − b 1 + b ) 2 k f 0 \begin{equation} x_k=b(\frac{b-1}{b+1})^k,y_k=(\frac{1-b}{1+b})^k,f_k=(\frac{1-b}{1+b})^{2k}f_0 \end{equation} xk=b(b+1b1)k,yk=(1+b1b)k,fk=(1+b1b)2kf0
  • 梯度下降图解
    第一步我们是垂直于当前点 x 1 x_1 x1的负数切线方向 ( − ∇ f ( x 1 ) ) (-\nabla f(x_1)) (f(x1))进行迭代,计算值后,到达第二个点 x 2 x_2 x2,我们再找到垂直于第二个点的负切线方向 ( − ∇ f ( x 2 ) ) (-\nabla f(x_2)) (f(x2)),这样不断地迭代,就形成了如下图所示的Z字型的锯齿状迭代方向。
    在这里插入图片描述
  • 动量变化:
    b 1 = ( 1 − b 1 + b ) 2 → b 2 = ( 1 − b 1 + b ) 2 \begin{equation} b_1= ( \frac{1-b}{1+b})^2\to b_2= ( \frac{1-\sqrt{b}}{1+\sqrt{b}})^2 \end{equation} b1=(1+b1b)2b2=(1+b 1b )2
  • 当b=1/100时,可得:
    b 1 = ( 99 101 ) 2 ; b 2 = ( 9 11 ) 2 ; → b 1 > b 2 \begin{equation} b_1=(\frac{99}{101})^2; b_2=(\frac{9}{11})^2;\to b_1>b_2 \end{equation} b1=(10199)2;b2=(119)2;b1>b2

3. 动量法梯度下降

  • 迭代方程: s k s_k sk:步长, z k z_k zk:速度, 0 < β < 1 0<\beta<1 0<β<1:惯量系数
    x k + 1 = x k − S z k ; z k = ∇ f k + β z k − 1 ; \begin{equation} \begin{align*} x_{k+1}=x_k - Sz_k;\\ z_k=\nabla f_k+\beta z_{k-1}; \end{align*} \end{equation} xk+1=xkSzkzk=fk+βzk1;

  • 我们之前算过 ∇ f k = S X \nabla f_k=SX fk=SX,将 z k z_k zk改为 z k + 1 z_{k+1} zk+1

  • 我们定义矩阵S的特征向量为q,特征值为 λ \lambda λ,整理可得:
    x k + 1 = x k − S z k ; z k + 1 − S x k + 1 = β z k ; \begin{equation} \begin{align*} x_{k+1}=x_k - Sz_k;\\ z_{k+1}-Sx_{k+1}=\beta z_{k}; \end{align*} \end{equation} xk+1=xkSzkzk+1Sxk+1=βzk;

  • 矩阵化上述公式可得:
    [ 1 0 − S 1 ] [ x k + 1 z k + 1 ] = [ 1 − S 0 β ] [ x k z k ] \begin{equation} \begin{bmatrix} 1&0\\\\ -S&1 \end{bmatrix} \begin{bmatrix} x_{k+1}\\\\ z_{k+1} \end{bmatrix}=\begin{bmatrix} 1&-S\\\\ 0&\beta \end{bmatrix} \begin{bmatrix} x_{k}\\\\ z_{k} \end{bmatrix}\end{equation} 1S01 xk+1zk+1 = 10Sβ xkzk

  • 我们可以定义如下特征值和特征向量如下:
    S q = λ q , x k = c k q , x k + 1 = c k + 1 q , z k = d k q , z k + 1 = d k + 1 q ; \begin{equation} Sq=\lambda q,x_k=c_kq,x_{k+1}=c_{k+1}q,z_k=d_kq,z_{k+1}=d_{k+1}q; \end{equation} Sq=λq,xk=ckq,xk+1=ck+1q,zk=dkq,zk+1=dk+1q;

  • 代入矩阵可得:
    [ 1 0 − S 1 ] [ c k + 1 q d k + 1 q ] = [ 1 − S 0 β ] [ c k q d k q ] \begin{equation} \begin{bmatrix} 1&0\\\\ -S&1 \end{bmatrix} \begin{bmatrix} c_{k+1}q\\\\ d_{k+1}q \end{bmatrix}=\begin{bmatrix} 1&-S\\\\ 0&\beta \end{bmatrix} \begin{bmatrix} c_kq\\\\ d_kq \end{bmatrix}\end{equation} 1S01 ck+1qdk+1q = 10Sβ ckqdkq

  • 整理可得:
    [ 1 0 − λ 1 ] [ c k + 1 d k + 1 ] = [ 1 − S 0 β ] [ c k q d k q ] \begin{equation} \begin{bmatrix} 1&0\\\\ -\lambda&1 \end{bmatrix} \begin{bmatrix} c_{k+1}\\\\ d_{k+1} \end{bmatrix}=\begin{bmatrix} 1&-S\\\\ 0&\beta \end{bmatrix} \begin{bmatrix} c_kq\\\\ d_kq \end{bmatrix}\end{equation} 1λ01 ck+1dk+1 = 10Sβ ckqdkq

  • 整理可得:
    [ c k + 1 d k + 1 ] = [ 1 0 λ 1 ] [ 1 − S 0 β ] [ c k q d k q ] \begin{equation} \begin{bmatrix} c_{k+1}\\\\ d_{k+1} \end{bmatrix}=\begin{bmatrix} 1&0\\\\ \lambda&1 \end{bmatrix}\begin{bmatrix} 1&-S\\\\ 0&\beta \end{bmatrix} \begin{bmatrix} c_kq\\\\ d_kq \end{bmatrix}\end{equation} ck+1dk+1 = 1λ01 10Sβ ckqdkq

  • 整理可得:
    [ c k + 1 d k + 1 ] = [ 1 − S λ − λ S + β ] [ c k d k ] \begin{equation} \begin{bmatrix} c_{k+1}\\\\ d_{k+1} \end{bmatrix}=\begin{bmatrix} 1&-S\\\\ \lambda&-\lambda S+\beta \end{bmatrix} \begin{bmatrix} c_k\\\\ d_k \end{bmatrix}\end{equation} ck+1dk+1 = 1λSλS+β ckdk

  • 将系数矩阵为R矩阵可得:
    [ c k + 1 d k + 1 ] = R [ c k d k ] \begin{equation} \begin{bmatrix} c_{k+1}\\\\ d_{k+1} \end{bmatrix}=R \begin{bmatrix} c_k\\\\ d_k \end{bmatrix}\end{equation} ck+1dk+1 =R ckdk R = [ 1 − S λ − λ S + β ] \begin{equation} R=\begin{bmatrix} 1&-S\\\\ \lambda&-\lambda S+\beta \end{bmatrix} \end{equation} R= 1λSλS+β

  • 综上所示,对于迭代方程来说,S, β \beta β的选择直接会影响到矩阵R的大小,我们希望的是选择合适的S, β \beta β使得矩阵R的最大的特征值尽可能达到最小,假设矩阵R的特征值为 e 1 , e 2 e_1,e_2 e1,e2,则可得如下:
    ( S , β ) = arg min ⁡ S , β { max ⁡ ( ∣ e 1 ( λ ) ∣ , ∣ e 2 ( λ ) ∣ ) } , s t : λ min ⁡ ( S ) ≤ λ ≤ λ max ⁡ ( S ) \begin{equation} (S,\beta)=\argmin\limits_{S,\beta}\{\max(|e_1(\lambda)|,|e_2(\lambda)|)\} ,st:\lambda_{\min}(S)\le\lambda\le\lambda_{\max}(S) \end{equation} (S,β)=S,βargmin{max(e1(λ),e2(λ))},st:λmin(S)λλmax(S)

  • 这里只给结论最好的 S , β S,\beta S,β,后续研究:
    s = ( 2 λ max ⁡ + λ min ⁡ ) 2 ; β = ( λ max ⁡ − λ min ⁡ λ max ⁡ + λ min ⁡ ) 2 ; \begin{equation} s=(\frac{2}{\sqrt{\lambda_{\max}}+\sqrt{\lambda_{\min}}})^2; \beta=(\frac{\sqrt{\lambda_{\max}}-\sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max}}+\sqrt{\lambda_{\min}}})^2; \end{equation} s=(λmax +λmin 2)2;β=(λmax +λmin λmax λmin )2;

  • 之前我们的函数 f ( x ) = 1 2 X T S X = 1 2 ( x 2 + b y 2 ) f(x)=\frac{1}{2}X^TSX=\frac{1}{2}(x^2+by^2) f(x)=21XTSX=21(x2+by2)矩阵S, b < 1
    λ max ⁡ = 1 , λ min ⁡ = b \begin{equation} \lambda_{\max}=1, \lambda_{\min}=b \end{equation} λmax=1,λmin=b

  • 代入可得:
    s = ( 2 1 + b ) 2 ; β = ( 1 − b 1 + b ) 2 ; \begin{equation} s=(\frac{2}{1+b})^2; \beta=(\frac{1-\sqrt{b}}{1+\sqrt{b}})^2; \end{equation} s=(1+b2)2;β=(1+b 1b )2;

  • 我们来看之前的梯度下降Ordinary descent factor
    β 1 = ( 1 − b 1 + b ) 2 ; \begin{equation} \beta_1=(\frac{1-b}{1+b})^2; \end{equation} β1=(1+b1b)2;

  • 动量法梯度下降 Accelerated descent factor
    β 2 = ( 1 − b 1 + b ) 2 ; \begin{equation} \beta_2=(\frac{1-\sqrt{b}}{1+\sqrt{b}})^2; \end{equation} β2=(1+b 1b )2;

  • 也就是当同等b时,动量法给的值更好!


http://www.niftyadmin.cn/n/5561441.html

相关文章

ES6基本语法(三)——Set集合和Map集合

Set集合和拓展运算符 Set 集合 Set 是 JavaScript 中的一种数据结构&#xff0c;用于存储唯一值的集合。以下是 Set 集合的一些方法和操作的示例&#xff1a; // 创建一个空 Set 集合 let fruits new Set();// 创建一个有初始值的 Set 集合 let fruits1 new Set([1, 2, 3]…

ubuntu 网络 通讯学习笔记2

1.ubuntu 网络常用命令 在Ubuntu中&#xff0c;有许多网络相关的常用命令。以下是一些主要命令及其用途&#xff1a; ifconfig&#xff1a;此命令用于显示和配置网络接口信息。你可以使用它来查看IP地址、子网掩码、广播地址等。 例如&#xff1a;ifconfig 注意&#xff1a…

1.6.丢弃法

丢弃法 动机&#xff1a;一个好的模型需要对输入数据的扰动足够健壮&#xff0c;丢弃法就是在层之间加入噪音。也可以在数据中使用噪音&#xff0c;等价与Tikhonov正则 无偏差的加入噪音 ​ 对于数据 x x x&#xff0c;加入噪音后的 x ′ x x′的期望值是不变的&#xff0c;…

SPSS(Statistical Package for the Social Sciences)和Stata的区别,2款数据分析和统计分析软件

SPSS&#xff08;Statistical Package for the Social Sciences&#xff09;和Stata都是广泛使用的统计分析软件&#xff0c;它们各有特点和优势&#xff0c;适用于不同的使用场景和用户需求。以下是它们一些主要的对比点&#xff1a; 用户界面&#xff1a; SPSS&#xff1a;提…

【京存】提供原厂数据恢复!

君子以思患而豫防之。——《易传象传下既济》 京存存储&#xff0c;全系列产品自研。 在提供高带宽、高IOPS、低延迟等特性的同时&#xff0c;提供诸如冗余电源、冗余风扇等物理冗余和RAID组、EC卷等逻辑冗余。还拥有回收站、快照、审计、RAID组加密、ACL权限等保护措施。 同…

sqlalchemy定期保持mysql连接活跃

sqlalchemy定期保持mysql连接活跃 在使用SQLAlchemy连接MySQL数据库时,确保保持活跃连接是很重要的,特别是在长时间不使用数据库连接时。以下是一些建议来定期保持活跃连接: 1、连接池设置: SQLAlchemy使用连接池管理数据库连接。通过配置合适的连接池参数可以有效地保持…

【echarts】tooltip 增加单位

单个柱子 const data [{value: 1,per: 2},{value: 22,per: 2},{value: 222,per: 3} ];tooltip: {trigger: axis,show: true,axisPointer: {type: line,lineStyle: {color: rgba(0, 0, 0, 0.03),type: solid,width: 60,},},formatter(params) {return ${params[0].name}: ${par…

【J1】牡牛和牝牛

题目描述 牡 mǔ&#xff0c;畜父也。牝 pn&#xff0c;畜母也。 ——《说文解字》 约翰要带 N 只牛去参加集会里的展示活动&#xff0c;这些牛可以是牡牛&#xff0c;也可以是牝牛。牛们要站成一排&#xff0c;但是牡牛是好斗的&#xff0c;为了避免牡牛闹出乱子&#xff0c…